Chem. Ber. 117, 1003 - 1012 (1984)

Dichloropalladium(II)-Komplexe mit α-Aminosäuren, α-Aminosäureestern, Dipeptiden und Dipeptidestern

Ute Taubald, Ulrich Nagel und Wolfgang Beck *

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 18. Mai 1983

Eine Reihe von *trans*-Dichloropalladium(II)-Komplexen Cl_2PdL_2 mit (L = α -Aminosäure, α -Aminosäureester, Dipeptid, Dipeptidester) sowie *cis*-Cl_2Pd(Histidin) wurde dargestellt und spektroskopisch charakterisiert. Die Röntgenstruktur von *trans*-Cl_2Pd(GlyOEt)₂ (**3b**) wurde bestimmt.

Dichloropalladium(II) Complexes with α -Amino Acids, α -Amino Acid Esters, Dipeptides, and Dipeptide Esters

A series of *trans*-dichloropalladium(II) complexes Cl_2PdL_2 ($L = \alpha$ -amino acid, α -amino acid ester, dipeptide, dipeptide esters) and *cis*- Cl_2Pd (histidine) has been prepared and spectroscopically characterized. The X-ray structure of *trans*- Cl_2Pd (GlyOEt)₂ (**3b**) has been determined.

In Fortführung unserer Arbeiten über α -Aminosäure-Platin-Komplexe^{1,2)} berichten wir im folgenden über eine Reihe von Palladium(II)-Verbindungen mit α -Aminosäuren und Dipeptiden. Palladium(II)-Komplexe mit α -Aminosäure-Anionen als Chelatliganden sind schon länger bekannt³⁾. Springer und Curran⁴⁾ berichteten über die Glycinester-Verbindungen Cl₂Pd(NH₂CH₂CO₂R)₂ (R = Me, Et). Vor kurzem wurden Dichloropalladium-Komplexe mit Phenylglycin und Phenylglycinester beschrieben⁵⁾. Einige Palladium-Komplexe zeigten wie entsprechende Platinverbindungen Antitumoraktivität⁶⁾.

Darstellung

Die Komplexe 2 mit α -Aminosäuren als Liganden werden aus den *trans*-Bis(chelat)-Verbindungen durch Umsetzung mit konz. Salzsäure erhalten. Auf diese Weise wurden von *Volshtein* und Mitarbb.⁷⁾ die entsprechenden Platin-Komplexe dargestellt.

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0009 – 2940/84/0303 – 1003 \$ 02.50/0 Die intensiv gelben Verbindungen 2 sind in Wasser sehr gut löslich. Sie sind als Ausgangsverbindungen für die Dipeptidsynthese am Komplex im Vergleich zu den entsprechenden Platin-Komplexen^{2,8)} zu wenig stabil.

Komplexe 3 mit α -Aminosäureestern als Liganden entstehen in guten Ausbeuten aus $[PdCl_4]^{2-}$ und α -Aminosäureester-hydrochloriden in wäßriger Lösung. Es ist hier nicht notwendig, die freien Aminosäureester einzusetzen⁴⁾.

Versuche, die Dichlorobis(aminosäureester)-Komplexe **3** nach der Methode von *Wallin*⁹⁾ (für Platin-Verbindungen) aus den entsprechenden Bis(chelat)-Komplexen durch Umsetzung mit HCl-Gas in Ethanol darzustellen, waren in allen Fällen nicht erfolgreich. Einen Oxalato-Komplex (GlyOEt)₂Pd(oxalat) konnten wir aus Na₂[Pd-(oxalat)₂] und freiem Glycin-ethylester erhalten.

Entspechend setzt sich $PdCl_4^2$ mit Dipeptiden bzw. Dipeptidester-hydrochloriden zu Dichlorobis(dipeptid)-Komplexen 4 und 5 um.

Die Dipeptide treten hier als einzähnige Liganden auf. Im alkalischen Medium kann die NH-Gruppe der Peptidbindung deprotoniert werden unter Bildung von Komplexen mit Dipeptiden als dreizähnige Liganden¹⁰.

Histidin bzw. Histidinester und $PdCl_4^{2-}$ (im Molverhältnis 1:1) bilden *cis*-Dichloroverbindungen **6** mit Histidin als Chelatliganden.

Mit Histidin im Überschuß wurde der Bis(chelat)-Komplex $[Pd(HisOH)_2]^{2+}$ erhalten^{11,12}.

Die Verbindungen 3b - d, 6a, 6b sowie (GlyOEt)₂Pd(oxalat) zeigten nach Untersuchungen der Fa. Bristol-Myers, USA, am L 1210 Leukämie- bzw. B 16 Melanom-Tumor von BDF₁-Mäusen (Q) sowie auch am in vitro-Modell (MDA-MB 231-Mammatumorzellen) sehr schwache bzw. keine Antitumorwirkung. **3d** hatte bei Einmalgabe eine ungewöhnliche Toxizität, die bei Mehrfachapplikation nicht auftrat.

Spektroskopische Daten

Charakteristische IR-Absorptionen der Komplexe 2-6 sind in Tab. 1 aufgeführt.

	v(1	v(NH) $v(C=O)$ Amid (I) Amid (II)		δ(NH ₂)	ω(NH ₂)	v(PdCl)		
2a	3262 s 3104 w	3204 s 3040 w	1710 s/b	_	_	1570 w	1245 s/b	350 s
2 b	3303 s 3203 s	3268 s 3130 s	1730 sh 1700 s/b	-	-	1579 s	1224 s	337 m
2 c	3280 sh 3220 s	3238 sh 3140 m	1720 s/b	-	-	1574 m	1220 m	338 m
2 d	3260 m 3142 s	3221 m 3116 s	1718 s	_	-	1590 s	1210 s	355 m (340 m)
3 a	3270 s 3143 s	3220 s	1740 s	-	-	1570 s	1236 s	347 m 325 m
3 b	3270 s 3140 s	3228 s	1740 s	-	-	1580 s	1220 s	338 m 329 sh
3c	3304 m 3202 b	3278 s 3120 s	1741 s	-	-	1565 s	1225 s	330 s
3 d	3295 m 3205 sh	3238 m 3130 m	1738 s	-	-	1580 m	1201 s	335 sh 315 sh
3e	3265 w 3136 m	3198 m	1720 s	-	-	1580 m	1210 s	333 w
4a	3360 s 3230 s	3260 s 3158 s	1713/ 1700 s	1624 s	1546 s		_	334 s 310 m
4 b	3290 m	3220 m	1738 s	1663/ 1635 s	1538 s		1210 s	316 w
4c	3380 m 3206 m	3298 m 3148 m	1735/ 1715 s	1650 s	1545/ 1530 s		1200 s	342 m (323 w)
4 d	3300 s 3140 w	3240 m 3075 sh	1720 s 1707 sh	1663 s	1550 s		1200 m	335 m
4e	3310 s 3230 w	3295 s 3200 m	1720 s	1655 s	1550 s		1224 s	336 m
4f 5a	3290 s 3320 s 3260 s	3220 s 3290 sh	1725 s 1713 s	1665 s 1664/ 1650 s	1555 s 1560 s		1200 m 1215 s	335 m 345 m
5 b 5 c	3308 s 3110 w	3218 m	1735 s	1660 s	1550 s		1205 s	333 m
6a	3400 s 3260 m 3164 m	3383 m 3220 m 3138 m	1750 sh 1740 s	-	-	1580 m	1200 s	332 s 320 s
6b	3270 s 3125 s	3170 b 3050 m	1738 s	-	_	1588 m	1228/ 1219 s	336 m 310 m

Tab. 1. Charakteristische IR-Absorptionen (cm⁻¹, in KBr)

Die Verbindungen 2-5 zeigen meist nur eine v(Pd-Cl)-Bande entsprechend der *trans*-Struktur; jedoch finden sich auch Ausnahmen (3a, 3d, 4a). Die *cis*-Dichlorohistidin-Komplexe 6 zeigen wie erwartet zwei v(Pd-Cl)-Absorptionen. Im Gegensatz zu den *cis*-Dichloroplatin-Verbindungen kann bei den *cis*-Dichloropalladium-Komplexen keine Aufspaltung der v(C=O)- und der $\delta(NH_2)$ -Banden beobachtet werden, wie schon von *Hartley* berichtet wurde¹³⁾.

Chem. Ber. 117 (1984)

Tab. 2. ¹H-NMR-Daten, a) in [D₆]Aceton als Lösungsmittel und internem Standard; b) in [D₆]DMSO als Lösungsmittel und internem Standard

3 b a)	CH ₃ 1.23 t, CH ₂ CH ₃ 4.17 q, NH ₂ CH ₂ 3.52 s
3c ^{a)}	CH_3 3.62 s, $CH - CH_2$ 3.33 t, $CH - CH_2$ 2.82 m, C_6H_5 7.31 s, b
3d ^{a)}	CH ₃ 1.26 t, CH_2 CH ₃ 4.19 q, NH ₂ CH – CH ₂ 2.76 m, NH ₂ CH – CH ₂ 1.74 m, CH(CH ₃) ₂ 1.01 2 Dubletts
4a ^{b)}	CH ₂ CO 3.58 s, CH ₂ CO ₂ H 3.84 d, CONH-CH ₂ 8.40 t
4b ^{b)}	$NH_2CH_2CO 3.51 $ s, $NHCH - CO_2H 4.44 $ m, $NH - CHCO_2H 8.44 $ d, $CHCH_2Ph 3.00 $ m, $C_6H_5 7.22 $ s, b
4c ^{b)}	NH ₂ CH ₂ CO 3.57 s, NHCH-CO ₂ H 4.23 t, NH-CHCO ₂ H 8.31 d, CH ₂ CH(CH ₃) ₂ 1.54 m, CH(CH ₃) ₂ 1.54 m, CH(CH ₃) ₂ 0.88 d, b
4d ^{b)}	$NH_2CH_2CO 3.62 \text{ s}, NHCH - CO_2H 4.22 \text{ m}, NH - CHCO_2H 8.21 \text{ d}, CH(CH_3)_2$ 2.06 m, CH(CH ₃) ₂ 0.91 d und 0.83 d
4e ^{b)}	$NH_2CH_2CO 3.55 s$, $NHCH - CO_2H 4.26 t$, b, $NH - CHCO_2H 8.31$, $CHCH_3 1.28 d$ und 1.24 d
4f ^{b)}	NH ₂ CH 3.11 m, NHCH 4.23 t, NH-CH 8.43 d, NH ₂ CHCH ₂ 3.11 m, C ₆ H ₅ 7.30 s, b, CH ₂ CH(CH ₃) ₂ 1.60 m, CH(CH ₃) ₂ 0.92 d und 0.86 d
5 g ^{b)}	NH ₂ CH ₂ CO 3.97 m, NHCH ₂ CO ₂ 3.44 d, OCH ₂ 4.06 t, b, OCH ₂ CH ₂ CH ₂ 1.43 m, CH ₂ CH ₃ 0.87 t
5 b ^{b)}	NH ₂ C H_2 CO 3.29 s, NHC H – CH ₂ 2.97 t, b, C H_2 Ph 2.91 d, C ₆ H ₅ 7.23 s, b, CH ₂ C H_3 1.09 t, OCH ₂ 4.02 q
5c ^{b)}	$NH_2CH - CH_2$ 3.10 m, CH_2Ph 3.89 d, C_6H_5 7.30 s, b, $NHCH_2CO$ 3.29 s, CH_2CH_3 1.19 t, OCH_2 4.00 q
6a ^{b)}	NH_2CHCH_2 2.96, $NH_2CH - CH_2$ 4.41, = $CHNH - CH = 4.90$, $NHCH = C$ 7.12, $NHCH = N$ 8.13

Tab. 3. ¹³C-NMR-Daten (in $[D_6]DMSO$ als Lösungsmittel und interner Standard, Protonen-entkoppelt). * Von Lösungsmittelsignal verdeckt

- **3b** CH₃ 13.90, CH₂CH₃ 60.55, NH₂CH₂ 45.05, CO₂ 168.62
- 3d CH₃ 14.39, CH₂CH₃ 62.01, NH₂CH 43.86, NH₂CH CH₂ 56.10, CH(CH₃)₂ 25.76, CH(CH₃)₂ 22.46 und 23.27, CO₂Et 172.68
- 48 NH₂CH₂CO 168.62, NHCH₂CO₂H 170.74, NH₂CH₂ 46.62, NH CH₂ 45.70
- **4b** NH₂CH₂CO 168.16, NHCH CO_2H 172.36, NH₂CH₂CO 45.62, NH CHCO₂H 53.61, NHCH CH_2 39.96*, Ph 137.26, 129.65, 129.00, 128.10, 127.40, 126.34
- 4c NH₂CH₂CO 168.16, NHCH CO₂H 173.50, NH₂CH₂ 45.65, NH CHCH₂ 50.25, NHCH CH₂ 40.04*, CH(CH₃)₂ 24.12, CH(CH₃)₂ 22.65 und 21.27
- **4d** NH₂CH₂CO 168.55, NHCH CO_2H 172.42, NH₂CH₂CO 45.65, NH CHCO₂H 57.19, CH(CH₃)₂ 29.78, CH(CH₃)₂ 18.91 und 17.78
- **4e** NH₂CH₂CO 165.42, NHCH CO₂H 173.55, NH₂CH₂ 56.43, NH CHCH₃ 47.44, NHCH CH₃ 17.15
- 4f $NH_2CH CO$ 167.97, $NHCH CO_2H$ 173.55, NH_2CHCH_2 50.42, $NH CHCH_2$ 53.15, $NHCH CH_2$ 39.90*, $CH(CH_3)_2$ 24.06, $CH(CH_3)_2$ 22.71 und 21.27, Ph 134.71, 129.46, 129.21, 128.37, 128.02, 127.02
- 5a CH₂CONH 166.42, CH₂CO₂Bu 169.30, NH₂CH₂CO 47.52, NH CH₂CO₂Bu 39.95*, OCH₂ 64.18, OCH₂CH₂ 30.05, CH₂CH₃ 18.43, CH₂CH₃ 13.42
- **5b** CH₂CONH 168.22, CH CO₂Et 170.90, NH₂CH₂CO 45.51, NH CHCO₂Et 53.16, OCH₂ 60.38, OCH₂CH₃ 13.74, CHCH₂Ph 39.90*, Ph 136.72, 136.53, 128.92, 126.62, 128.08, 126.42
- 5c CH CONH 168.95, CH₂CO₂Et 170.84, NH₂CHCO 46.90, CH₂CO₂Et 58.79, OCH₂ 60.44, OCH₂CH₃ 13.85, CH – CH₂Ph 39.74*, Ph 134.68, 129.35, 129.05, 128.29, 128.21, 126.94
- **6a** $CH CO_2H$ 170.92, $CH CO_2H$ 50.65, $NH_2CH CH_2$ 28.04, = N C = CH 131.86, NH CH = N 136.90, HNCH = C 114.31

Die ¹H- und ¹³C-NMR-Spektren (Tab. 2 und 3) sind in allen Fällen im Einklang mit den angegebenen Strukturen. Die Zuordnung der Signale erfolgte in Anlehnung an Literaturdaten^{14,15)}. In den ¹³C-Spektren werden jeweils die Signale aller C-Atome der Liganden gefunden.

Röntgenstruktur von 3b

3b besitzt *trans*-Struktur (Abb. 1). Das Molekül hat eine Punktsymmetrie mit dem Palladiumatom auf dem Inversionszentrum. Wie häufig beobachtet, nehmen die anisotropen thermischen Atomparameter in Richtung der Kettenenden der Glycin-ethylester-Liganden zu (Tab. 4). Die Pd – N- und Pd – Cl-Abstände (Tab. 5) sind denen in Pd(Gly)(GlyOH)Cl¹⁶ (Pd – N 211, 201 pm, Pd – Cl 229 pm) sehr ähnlich. Die Pd – Cl-Abstände stimmen z. B. überein mit denen in *trans*-Dichlorobis(imidazol)palladium(II)¹⁷. Bei den Bindungslängen und -winkeln des Glycinesterliganden sind unter Berücksichtigung der großen thermischen Parameter keine auffälligen Abweichungen von den erwarteten Werten festzustellen.

Abb. 1. Molekülstruktur von 3b. Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit

Der Wilhelm-Sander-Stiftung, dem Fonds der Chemischen Industrie sowie der BASF Aktiengesellschaft, Ludwigshafen, danken wir herzlich für die Förderung unserer Arbeiten, Herrn Prof. H. Schönenberger und Frau Dr. Beate Wappes (Universität Regensburg) für die Ausführung von in vitro-Tests, Herrn M. Steimann für wertvolle Mitarbeit.

Experimenteller Teil

Schmelz- bzw. Zersetzungspunkte: Mel-Temp-Apparat der Firma Laboratory Devices. – IR-Spektren: Perkin-Elmer-IR-Doppelstrahlphotometer 325. – NMR-Spektren: Jeol FX 90 Q.

1) Bis(chelat)-Komplexe 1: Die in der Literatur³⁾ angegebene Methode wurde etwas modifiziert.

Beispiel: *Bis(glycinato)palladium(II)* (1a): Die Lösung von 1.0 mmol (0.29 g) Na_2PdCl_4 und 10 mmol (0.75 g) Glycin in 5 ml Wasser wird gerührt. Nach etwa 1/2 h tritt ein hellgelber Niederschlag auf, der nach 3 h abgefrittet, mit 5 ml Wasser gewaschen und im Ölpumpenvak. getrocknet wird.

```
Chem. Ber. 117 (1984)
```

Die Synthese von 1b - e erfolgt analog.

Bis(α-aminosäure)dichloropalladium(II)-Komplexe 2

Beispiel: Dichlorobis(glycin)palladium(II) (2a): Die Lösung von 1.0 mmol (0.25 g) 1a in 5 ml konz. Salzsäure wird gerührt. Es tritt sofort eine Farbvertiefung nach dunkelgelb ein. Nach 12 h Rühren wird der Niederschlag abgefrittet und zweimal mit je 2 ml kalter 2 N HCl und einmal mit kaltem Wasser gewaschen. Trocknen im Ölpumpenvak.

Die Darstellung von 2b und c erfolgt analog. 2d und 6a werden wie die Verbindungen 3 aus Na_2PdCl_4 und der entsprechenden α -Aminosäure erhalten.

3) Bis(a-aminosäureester)dichloropalladium(II)-Komplexe 3

Beispiel: Dichlorobis(glycin-ethylester)palladium(II) (3b): Aus einer Lösung von 1.0 mmol (0.29 g) Na₂PdCl₄ und 2.0 mmol (0.28 g) Glycin-ethylester-hydrochlorid in 4 ml Wasser fällt nach 1 h ein gelber Niederschlag an, der abgefrittet, zweimal mit einigen ml Wasser, mit 5 ml Ether gewaschen und im Ölpumpenvak. getrocknet wird. Analog erfolgt die Darstellung von 3a - e.

Bei Verbindung **6b** wird Na_2PdCl_4 und Histidin-methylester-dihydrochlorid im Molverhältnis 1:1 eingesetzt.

4) Dichlorobis(dipeptid)palladium(II)-Komplexe 4, 5

Beispiel: Dichlorobis(glycylglycin-butylester)palladium(II) (5a): Die Lösung von 2.0 mmol (0.59 g) Na_2PdCl_4 und 4.0 mmol (0.75 g) Glycylglycin-butylester in 7 ml Wasser wird gerührt. Nach etwa 1 h beginnt sich ein hellgelber Niederschlag abzuscheiden. Nach 12 h Rühren frittet man ab, wäscht zweimal mit einigen ml Wasser und trocknet im Ölpumpenvak.

Die Synthese von 4a - f und 5b, c erfolgt analog.

5) Bis(glycin-ethylester)(oxalato)palladium(II)

Eine Lösung von 1.0 mmol (0.36 g) Natrium-bis(oxalato)palladium(II) und 2.0 mmol (0.20 ml) freiem Glycin-ethylester in 3 ml Wasser wird 2 h gerührt. Der gelbe Niederschlag wird abgefrittet, zweimal mit je 1 ml Wasser gewaschen und im Ölpumpenvak. getrocknet. Zers. 185 bis 190 °C. Ausb. 44%. – IR (KBr): 3263, 3220, 3195 sh, 3135 (vNH); 1745, 1730 sh (vCO-Ester), 1700, 1680 cm⁻¹ (vCO-Oxalat).

$$C_{10}H_{18}N_2O_8Pd$$
 (400.7) Ber. C 29.99 H 4.53 N 7.00 Gef. C 29.77 H 4.36 N 7.14

Röntgenstrukturanalyse von 3b*)

Kristalldaten: $C_8H_{18}Cl_2N_2O_4Pd$, M = 383.5 g · mol⁻¹, monoklin $P2_1/c$, a = 942.0(3), b = 1221.1(4), c = 612.8(2) pm, \beta = 80.77(3)^\circ, V = 0.6957(4) nm³, Z = 2, d_{ber} = 1.83 g/cm³, d_{gef} = 1.833 g/cm³.

Ein orangefarbener Kristall von 0.15 mm × 0.2 mm × 0.4 mm wurde auf einem Syntex-R3-Diffraktometer vermessen; λ (Mo- K_{α}) = 71.069 pm, Graphitmonochromator, ω -Scan, $\Delta \omega$ = 0.7°; 3° $\leq \dot{\omega} \leq 29.3^{\circ}$ min⁻¹, 4° $\leq 2\Theta \leq 55^{\circ}$, 1533 Reflexe ($I \geq 2\sigma(I)$). Die Absorption wurde korrigiert (μ = 17.07 cm⁻¹). Die Strukturlösung erfolgte mit dem SHELX-Programmsystem und führte bei R_1 = 0.064 und R_w = 0.066 zu den in den Tabellen angegebenen Werten.

 $R_{w} = \sum |F_{o} - F_{c}| \sqrt{w} / \sum F_{o} \sqrt{w}; w = [\sigma^{2}(F_{o}) + 0.0002 F_{o}^{2}]^{-1}.$

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50478, des Autors und des Zeitschriftenzitats angefordert werden.

Die Wasserstoffatome wurden in die berechneten Lagen eingesetzt. Die Restelektronendichte war nach der abschließenden Verfeinerung $< 0.8 \cdot 10^{-6} e \cdot pm^{-3}$.

		x/a		y/b		z/c				
Pd		0		0		0				
Cl	(1)	- 172(2	2)	1333(1)	-	2595(3)				
N(1)	1225 (6	5)	1019(4)		1619(9)				
C(1)	2745 (8	3)	744(6) 1150(14)						
C(2	2)	3617 (9))	1400(7)		2616(17)				
0(1)	3170(7	')	2026(5)	2026(5) 3977(10)					
O()	2)	5018(7	')	1131(6)		1950(17)				
C(3	3)	6016(1	7)	1643(10)		3277 (41)				
C(4)		6895(1	7)	1077(11) 3954(25)						
		Anisotrop	e Temperatu	rfaktoren (× 1	$(0^4)^{a}$					
	U_{11} U_{22} U_{33}			U ₂₃	U ₁₃	U ₁₂				
Pd	40(1)	32(1)	39(1)	-2(1)	- 17(1)	-1(1)				
Cl(1)	76(1)	43(1)	55(1)	13(1)	-32(1)	-13(1)				
N(1)	46(3)	33(2)	51(3)	2(2)	- 22(2)	-4(2)				
C(1)	54(4)	42(3)	85(5)	- 13(3)	-35(4) 2(3					
C(2)	2) 61(5) 55(4) 116(7)			8(5)	(5) - 59(5) - 6					
O(1)	89(4)	78(4)	74(4)	-17(3)	- 39(3)	- 14(3)				
O(2)	76(5)	76(4)	270(11)	- 47 (6)	- 109 (6)	23(3)				
C(3)	152(13)	91 (8)	499(32)	- 66 (13)	- 251 (19)	24(8)				
C(4)	183(14)	138(11)	190(14)	- 82(10)	- 146(13)	79(10)				

Tab. 4. Atomkoordinaten (\times 10⁴) von 3b

a) Der anisotrope Temperaturfaktor T ist definiert durch: $T = \exp[-2\pi^2 (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2 U_{12}hka^*b^* + 2 U_{13}hla^*c^* + 2 U_{23}klb^*c^*)].$

Tab. 5. Bindungsabstände (Å) in 3b

Pd –	Cl(1)	2.299(2)	Pd – N(1)	2.057(6)	
N(1)	~ C(1)	1.454(9)	C(1) - C(2)	1.536(13)	
C(2)	-O(1)	1.160(11)	C(2) - O(2)	1.358(11)	
O(2)	- C(3)	1.477(23)	C(3) - C(4)	1.203 (24)	

Tab. 6. Bindungswinkel (°) in 3b

_				
	Cl(1) - Pd - N(1)	90.7(2)	C(1) - C(2) - O(1)	126.7(8)
	N(1) - Pd - Cl(1a)	89.3(2)	C(1) - C(2) - O(2)	106.4(7)
	N(1) - Pd - N(1a)	180.0	O(1) - C(2) - O(2)	126.8(9)
	Cl(1) - Pd - Cl(1a)	180.0	C(2) - O(2) - C(3)	114.0(10)
	Pd - N(1) - C(1)	112.1(4)	O(2) - C(3) - C(4)	118.7(12)
	N(1) - C(1) - C(2)	111.5(6)		

	Ausb. (%)	80	43	56	<u>%</u>	53	65	28	31	30	46	65	37	38
	Schmp. (°C)	170-174	232 - 238	203 205	223 – 227	242 245	188 – 194	176 – 181	140 145	222 – 225	178 – 180	169 – 172	106 - 108	75 - 78
	Farbe	hellgelb	zartgelb	hellgelb	heligelb	hellgelb	kräftig gelb	kräftig gelb	gelb	gelb- orange	gelb	gelb	heligelb	zartgelb
	z	11.01 10.88	9.91 9.84	7.64 7.28	7.72 7.84	7.64 7.66	8.56 8.47	7.93 7.84	6.37 6.14	6.43 6.40	7.88 7.93	7.30 7.36	5.23 5.38	5.65 5.44
Tab. 7. Analysendaten	Analyse H	3.17 3.02	4.28 4.68	6.60 7.14	5.56 5.73	6.60 6.79	3.08 3.28	3.99 3.95	5.96 6.21	5.09 5.14	3.97 4.40	4.73 4.68	4.89 5.05	6.91 6.94
	U	18.88 18.88	25.50 25.83	39.30 39.84	39.74 39.35	39.30 39.08	14.67 14.63	20.39 20.54	32.78 32.09	33.09 33.43	20.27 20.57	25.05 25.11	44.84 44.51	38.76 39.09
		Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.	Ber. Gef.
	Summenformel (Molmasse)	C4H ₈ N ₂ O4Pd (254.5)	C ₆ H ₁₂ N ₂ O ₄ Pd (282.6)	C ₁₂ H ₂₄ N ₂ O4Pd (366.7)	C ₁₂ H ₂₀ N ₂ O₄Pd (362.7)	C ₁₂ H ₂₄ N ₂ O ₄ Pd (366.7)	C ₄ H ₁₀ Cl ₂ N ₂ O ₄ Pd (327.4)	C ₆ H ₁₄ Cl ₂ N ₂ O ₄ Pd (353.5)	C ₁₂ H ₂₆ Cl ₂ N ₂ O ₄ Pd (439.7)	C ₁₂ H ₂₂ Cl ₂ N ₂ O ₄ Pd (435.6)	C ₆ H ₁₄ Cl ₂ N ₂ O ₄ Pd (355.5)	C ₈ H ₁₈ Cl ₂ N ₂ O ₄ Pd (383.6)	C ₂₀ H ₂₆ Cl ₂ N ₂ O₄Pd (535.7)	C ₁₆ H ₃₄ Cl ₂ N ₂ O ₄ Pd (495.8)
	Verbindung	Pd(GlyO) ₂ 1a	Pd(AlaO) ₂ 1b	Pd(L-LeuO) ₂ 1c	Pd(c-LeuO) ₂ 1d	Pd(IleO) ₂ 1e	PdCl ₂ (GlyOH) ₂ 2a	PdCl ₂ (AlaOH) ₂ 2b	PdCl ₂ (LeuOH) ₂ 2c	PdCl ₂ (c-LeuOH) ₂ 2d	PdCl ₂ (GlyOMe) ₂ 3a	PdCl ₂ (GlyOEt) ₂ 3b	PdCl ₂ (PheOMe) ₂ 3c	PdCl ₂ (LeuOEt) ₂ 3d

Tab. 7 (Fortsetzung)	Analyse Analyse Schmp. Ausb. C H N Farbe (°C) (96)	Ber. 39.08 6.15 5.70 weißgelb 143–147 10 Gef. 37.79 6.17 5.31	Ber. 21.76 3.65 12.69 gelb 206–209 98 Gef. 22.27 4.26 12.34	Ber. 42.50 4.54 9.01 gelb 195–198 74 Gef. 42.69 5.14 8.74	Ber. 34.70 5.82 10.12 gelb 206–209 72 Gef. 34.78 6.24 10.15	Ber. 31.99 5.37 10.66 gelb 222-227 50 Gef. 31.78 6.24 10.63	Ber. 25.58 4.29 10.93 zartgelb 185–188 85 Gef. 23.26 4.33 10.84	Ber. 49.09 6.04 7.63 gelb 142–150 86 Gef. 48.87 6.09 7.40	Ber. 34.70 5.82 10.12 gelb 175–178 62 Gef. 33.84 5.62 9.97	Ber. 46.07 5.35 8.30 gelb 122-125 35 Gef. 45.30 5.56 7.60	Ber. 46.07 5.35 8.30 gelb 135–140 40 Gef. 46.09 5.60 8.17	Ber. 21.74 2.34 12.68 gelb- 200–205 98 Gef. 21.82 2.93 12.51 orange	Ber. 24.27 3.20 12.13 gelb- 270–278 98 Gef. 24.26 3.39 12.09 orange
Tab. 7 (Fortsetzung)	Analyse H N	1 6.15 5.70 6.17 5.31	5 3.65 12.69 4.26 12.34	0 4.54 9.01 5.14 8.74	0 5.82 10.12 6.24 10.15	5.37 10.66 6.24 10.63	4.29 10.93 4.33 10.84	6.04 7.63 6.09 7.40	0 5.82 10.12 5.62 9.97	r 5.35 8.30 1 5.56 7.60	r 5.35 8.30 r 5.60 8.17	1 2.34 12.68 2.93 12.51	7 3.20 12.13 3.39 12.09
	U	Ber. 39.08 Gef. 37.79	Ber. 21.76 Gef. 22.27	Ber. 42.50 Gef. 42.69	Ber. 34.70 Gef. 34.78	Ber. 31.99 Gef. 31.78	Ber. 25.58 Gef. 23.26	Ber. 49.09 Gef. 48.87	Ber. 34.70 Gef. 33.84	Ber. 46.07 Gef. 45.30	Ber. 46.07 Gef. 46.09	Ber. 21.74 Gef. 21.82	Ber. 24.27 Gef. 24.26
	Summenformel (Molmasse)	C ₁₆ H ₃₀ Cl ₂ N ₂ O ₄ Pd (491.7)	C ₈ H ₁₆ Cl ₂ N ₄ O ₆ Pd (441.5)	C ₂₂ H ₂₈ Cl ₂ N₄O ₆ Pd (621.8)	C ₁₆ H ₃₂ Cl ₂ N₄O ₆ Pd (553.8)	C ₁₄ H ₂₈ Cl ₂ N4O ₆ Pd (525.7)	C ₁₀ H ₂₀ Cl ₂ N₄O ₆ Pd (469.6)	C ₃₀ H44Cl ₂ N4O6Pd (734.0)	C ₁₆ H ₃₂ Cl ₂ N₄O6Pd (553.8)	C ₂₆ H ₃₈ Cl ₂ N4O6Pd (677.9)	C ₂₆ H ₃₈ Cl ₂ N₄O6Pd (677.9)	C ₆ H ₉ Cl ₂ N ₃ O ₂ Pd (331.4)	C ₇ H ₁₁ Cl ₂ N ₃ O ₂ Pd (346.5)
	Verbindung	PdCl ₂ (c-LeuOEt) ₂ 3e	PdCl ₂ (GlyGlyOH) ₂ 4a	PdCl ₂ (GlyPheOH) ₂ 4b	PdCl ₂ (GlyLeuOH) ₂ 4c	PdCl ₂ (GlyValOH) ₂ 4d	PdCl ₂ (GlyAlaOH) ₂ 4e	PdCl ₂ (PheLeuOH) ₂ 4f	PdCl ₂ (GlyGlyOBu) ₂ 5a	PdCl ₂ (GlyPheOEt) ₂ 5b	PdCl ₂ (PheGlyOEt) ₂ 5c	PdCl ₂ (HisOH) ₂ 6a	PdCl ₂ (HisOMe) 6b

- ¹⁾ XXIX. Mitteil. von W. Beck und Mitarbb. über Metallkomplexe mit biologisch wichtigen Liganden; XXVIII. Mitteil.: J. Meder, W. Petri und W. Beck, Chem. Ber. 117, 827 (1984).
- ²⁾ W. Beck, H. Bissinger, M. Girnth-Weller, B. Purucker, G. Thiel, H. Zippel, H. Seidenberger, B. Wappes und H. Schönenberger, Chem. Ber. 115, 2256 (1982).
- ³⁾ R. Condrate und K. Nakamoto, J. Chem. Phys. 42, 7, 2590 (1964); J. F. Jackovitz, J. A. Durkin und J. L. Walter, Spectrochim. Acta, Part A 23, 67 (1967); J. F. Jackovitz und J. L. Walter, Spectrochim. Acta 22, 1393 (1966); R. J. Hooper, T. J. Lane und J. L. Walter, Inorg. Chem. 3, 1568 (1964).
- ⁴⁾ M. P. Springer und C. Curran, Inorg. Chem. 2, 6, 1270 (1963).
- 5) S. Mylonas, A. Valavanidis und V. Vonkonvalidis, Inorg. Chim. Acta 55, 125 (1981).
- ⁶⁾ D. S. Gill und B. Rosenberg, Abstracts 183rd ACS National Meeting, Las Vegas 1982; G. R. Newkome, F. R. Fronczak, V. K. Gupta, W. E. Puckett, D. C. Pantaleo und H. E. Kiefer, J. Am. Chem. Soc. 104, 1782 (1982).
- 7) L. M. Volshtein, Koord. Khim. 1, 595 (1975) [Chem. Abstr. 83, 107416 (1975)].
- 8) W. Beck, B. Purucker und E. Strissel, Chem. Ber. 106, 1781 (1973).
- 9) G. Wallin, Öfvers. Akad. Stockholm 49, 21 (1892).
- 10) L. E. Nance, A. F. Schreiner und H. G. Frye, Bioinorg. Chem. 3, 135 (1974).
- ¹¹⁾ H. C. Freeman in Inorganic Biochemistry, Vol. 1, S. 121, Edit. G. L. Eichhorn, Elsevier, Amsterdam 1973.
- ¹²⁾ N. N. Chonova, V. V. Strukov, G. B. Avetikyan und V. N. Chernonozhkin, Zh. Neorg. Khim. 25, 1569 (1980); Russ. J. Inorg. Chem. 25, 872 (1980).
- ¹³⁾ F. R. Hartley, The Chemistry of Platinum and Palladium, Applied Science Publishers Ltd., London 1973.
- 14) L. Erickson, J. McDonald, J. Howie und R. Clow, J. Am. Chem. Soc. 90, 6371 (1968).
- 15) W. Horsley, H. Sternlicht und J. S. Cohen, J. Am. Chem. Soc. 92, 680 (1970).
- ¹⁶ I. A. Baidina, N. V. Podberezskaya, S. V. Borisov und E. V. Golubovskaya, Zh. Strukt. Khim. 21, 188 (1980) [Chem. Abstr. 93, 86019t (1980)].
- ¹⁷⁾ M. C. Navarro-Ranninger, S. Martinez-Carrera und S. Garcia-Blanco, Acta Crystallogr., Part C 39, 186, 188 (1983).

[182/83]